Executive Summary

This Public Services and Utilities Discipline Report describes the potential impacts of the Capitol Lake – Deschutes Estuary Long-Term Management Project on public services and utilities. The Capitol Lake – Deschutes Estuary includes the 260-acre Capitol Lake Basin, located on the Washington State Capitol Campus, in Olympia, Washington. Long-term management strategies and actions are needed to address issues in the Capitol Lake – Deschutes Estuary project area. An Environmental Impact Statement (EIS) is being prepared to document the potential environmental impacts of various alternatives and determine how these alternatives meet the long-term management objectives identified for the watershed. This report was originally prepared to support the project’s Draft EIS, and has been revised for the Final EIS. In general, revisions have been made to provide additional information, update and expand analyses and findings, refine measures to mitigate potentially significant impacts, and correct inadvertent errors. Notable substantive revisions in the Public Services and Utilities Discipline Report are as follows:

- A new figure showing utility lines and pump stations in the study area was added.
- The analysis was updated to reflect changes to the Estuary and Hybrid Alternatives to avoid long-term closure of the 5th Avenue Bridge.
- The characterization of flooding potential and potential impacts to utilities was clarified.
- The analysis was updated to reflect potential impacts to Lacey, Olympia, Tumwater, and Thurston County (LOTT) Clean Water Alliance from the recently issued Budd Inlet Total Maximum Daily Load (TMDL) for Dissolved Oxygen.
- A mitigation measure was revised that addresses impacts to utilities at risk from corrosion under the Estuary and Hybrid Alternatives.

The study area for the public services and utilities analysis includes the project area and adjacent areas where water, stormwater, and wastewater infrastructure as well as local utility providers (electricity, natural gas, telecommunications) and emergency service providers could be affected by construction or operation of the project.
Potential impacts were determined by considering whether project activities could temporarily interrupt utility service during relocation or replacement, or as a result of accidental disruption, or create longer response times for emergency response and other public services on a temporary, permanent, or long-term basis. This discipline report also addresses how project alternatives could change how relative sea-level rise (RSLR) affects public services and utilities in the study area. Sea-level rise projections were incorporated into the hydrologic modeling and assumed as part of future conditions (see the Hydrodynamics and Sediment Transport Discipline Report [Attachment 5 of the Final EIS] for further information).

The analysis examines the No Action Alternative, as well as three action alternatives (Managed Lake, Estuary, and Hybrid).

Short-term (Construction) Impacts

The No Action Alternative would not result in construction impacts on public services and utilities because the project would not be built.

Under all action alternatives, truck trips from project construction of common elements (initial dredging, habitat area creation, and construction of boardwalks, dock and boat launch), could result in nominal increases in both response times for emergency service providers, and travel times for other services (e.g., solid waste collection, postal services, and school busses). With implementation of traffic control plans and proper notifications, potential impacts on response times and existing services associated with these elements would be less-than-significant.

The Estuary and Hybrid Alternatives would have minimal closures during the final connection work for the new 5th Avenue Bridge (approximately one month). For the Managed Lake Alternative, if closure of the 5th Avenue Bridge is needed during some or all of the period jet grouting occurs, and a temporary connection between 4th Avenue and Deschutes Parkway is not constructed, a 7-week closure could occur. All detoured vehicles would be required to use routes around the south end of the Middle Basin. While any detours that would occur under the Managed Lake, Estuary, or Hybrid Alternative would likely increase response times for emergency vehicles during peak times of day, impacts would be less-than-significant given the short-term duration of closure.

Under all action alternatives, accidental damage to utility lines during project construction could temporarily disrupt utility services. With implementation of measures to locate and confirm utility locations and to coordinate final construction plans with affected utilities, the potential impact on utilities would be less-than-significant. The Estuary and Hybrid Alternatives would require the relocation of major utility lines to facilitate removal and replacement of the 5th Avenue Bridge. Service disruptions are expected to be minimal as utility lines would be relocated prior to removal of the bridge. Both alternatives would also require stormwater outfall replacement along Deschutes Parkway SW and along the Arc of Statehood. With measures to minimize utility disruptions, impacts would be less-than-significant.
Long-term (Operational) Impacts

Both the No Action Alternative and the Managed Lake Alternative retain the Capitol Lake Basin in its current configuration, although the Managed Lake Alternative would include additional management actions. Through modeling conducted to support water quality improvement planning in the Deschutes River watershed, the Washington State Department of Ecology (Ecology) has identified Capitol Lake as the primary and largest source of nutrient loading in Budd Inlet. In June 2022, Ecology released the Budd Inlet TMDL for Dissolved Oxygen with waste load allocations for permitted sources of pollution, including LOTT Clean Water Alliance, which is another large source of nutrient pollution in Budd Inlet. The TMDL sets pollution limits to help meet water quality standards in Budd Inlet. The TMDL allocations from Ecology are in draft form and even when they are finalized, uncertainty will remain because meeting water quality standards in Budd Inlet will require a reduction in pollution from every human source in the watershed. If other sources do not meet their load allocations and water quality standards are not being met in the watershed, LOTT and other utility dischargers could be required to implement additional treatment. The likelihood of this increases under the No Action and Managed Lake Alternatives, because they retain Capitol Lake and Capitol Lake is the primary and largest source of nutrient loading to Budd Inlet, according to Ecology modeling. This means that LOTT would almost certainly need to implement additional treatment sooner under the No Action and Managed Lake Alternatives, and this would be a significant impact. While additional treatment may be needed in the future under the Estuary and Hybrid Alternatives to accommodate expected population increases, the chance these would need to occur during the project time horizon is smaller. Under the Estuary and Hybrid Alternatives, LOTT would have more time and flexibility to plan for future treatment investments because Budd Inlet would experience overall lower nutrient loading without Capitol Lake. There would be no impact to LOTT under the Estuary Alternative and a less-than-significant impact under the Hybrid Alternative, given uncertainty.

Under all action alternatives (Managed Lake, Estuary, and Hybrid), additional visitors could be attracted to the area as a result of enhanced recreational facilities and opportunities. Any increase in the demand for emergency response services as a result of increased use would be relatively minor, and impacts would be less-than-significant.

All action alternatives would also include recurring maintenance dredging. None of these activities are anticipated to result in damage to utilities or service interruptions. Recurring maintenance dredging could require the use of temporary power, such as onsite generators or use of existing electricity. Decontamination stations would also require the extension of buried electric lines and water lines to the station locations, but would require only minor amounts of electricity and water to operate. Under the Managed Lake Alternative, electricity required to power the dam would remain at existing levels. As a result, no impacts on utilities are anticipated.

Under the Estuary and Hybrid Alternatives, long-term impacts would primarily be associated with reestablishing tidal hydrology to the Capitol Lake Basin. Reestablishing tidal hydrology to the basin would introduce saltwater into locations where existing utility infrastructure is vulnerable to saline conditions. Corrosion of metal utility lines and surfaces is a risk when these objects encounter
Potentially vulnerable utilities include suspended utilities on the Olympia & Belmore Railroad, Inc. (OYLO) railroad crossing and buried ductile iron utility lines present in the area, including under Marathon Park. If exposed to salinity, the life expectancy of the lines could be reduced. Design measures are included to replace existing metal outfalls; however, these other low-lying utility lines would remain vulnerable. Given the potential for damage, impacts are considered significant. Coordination with local utility providers during their scheduled systemwide conditions assessments would help to ensure that corrosion risks are identified and appropriate measures are in place to monitor, protect, or replace utilities at risk of corrosion. With these measures, impacts from saltwater exposure could be reduced to less-than-significant levels.

Based on hydrologic modeling, overland flooding of low-lying areas around the Capitol Lake Basin would occur under all alternatives, presenting a potential risk to stormwater utilities and aboveground utility structures. Under the No Action and Managed Lake Alternatives, overland flooding is driven by extreme river flood events, whereas overland flooding under the Estuary and Hybrid Alternatives is driven by extreme tides and sea level rise. The highest maximum water levels would be expected to occur under the No Action and Managed Lake Alternatives, during extreme river flood events. Maximum water levels for the Managed Lake Alternative would be slightly (≤1 foot) higher than that of the No Action Alternative. Consequently, there would be a slightly greater extent of overland flooding under the Managed Lake Alternative. Under the Estuary and Hybrid Alternatives, water levels within the Capitol Lake Basin would no longer be controlled by the 5th Avenue Dam/tide gate and would rise and fall with the tides. Maximum water levels for the Estuary and Hybrid Alternatives would be slightly (≤1 foot) lower than that of the No Action and Managed Lake Alternatives. The majority of utilities that may be affected by overland flooding (from extreme river flood conditions and/or extreme tides with sea level rise) are on the eastern shore of the North Basin, in the vicinity of Heritage Park and Powerhouse Road. Other vulnerable utilities are present in areas adjacent to the Middle and South Basins. The extent of overland flooding in the North Basin would generally be the same for the No Action, Managed Lake, and Estuary Alternatives (the Hybrid Alternative’s barrier wall would reduce the extent of flooding in areas of Heritage Park and along Powerhouse Road). The extent of overland flooding in some areas adjacent to the Middle and South Basins would be greater for the No Action and Managed Lake Alternatives.

The project does not include actions to address sea level rise in downtown Olympia. However, the City of Olympia, LOTT, and Port of Olympia have outlined measures that would be implemented at different sea level rise projections as part of the Olympia Sea Level Rise Response Plan (LOTT et al. 2019). The project alternatives are generally compatible with and do not conflict with any of the proposed design measures. Those measures could be implemented by those entities as part of any alternative. Under the Estuary and Hybrid Alternatives, overland flooding from the basin in the Heritage Park area would be mitigated by the improvements planned under the Olympia Sea Level Rise Response Plan as currently designed. Under the No Action and Managed Lake Alternatives, overland flooding for the extreme river flood event would result in water surface elevations in the downtown area that exceed the flood-proofing elevations currently set in the Olympia Sea Level Response Plan. However, the Sea Level Rise Response Plan recognizes that different alternatives could present subtle changes in how the shoreline is modified to address sea level rise. Given the adaptability built into the
Sea Level Rise Response Plan, it is anticipated that future flooding predicted in the Heritage Park area under all alternatives would be mitigated by the improvements under the Sea Level Response Plan. This assumes ongoing coordination between Enterprise Services and the City of Olympia to assist the City with updated design parameters for the flood-proofing design of the Heritage Park berm in consideration of hydrologic modeling completed for this project.

Construction and operational impacts of the No Action and action alternatives are summarized in Tables ES.1 and ES.2.

Table ES.1 Summary of Construction Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Managed Lake Alternative</th>
<th>Impact Finding</th>
<th>Minimization and Other Mitigation Measures</th>
<th>Significant and Unavoidable Adverse Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Services –</td>
<td>Less-than-significant</td>
<td>BMPs and other measures to minimize impacts are included in Section 5.7.1.1.</td>
<td>No</td>
</tr>
<tr>
<td>Increased response times / travel time for emergency response and public service providers during construction of common elements (e.g., dredging)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Public Services** – | Less-than-significant | In addition to implementation of a CTMP and other measures described in the Transportation Discipline Report:
- Prior to construction, consult with local police, fire, and emergency response providers to develop and implement emergency response plans, establish emergency vehicle routes, and ensure that general emergency management services are not compromised. | No |
<p>| Increased response times / travel time for emergency response and public service providers during construction of 5th Avenue Dam overhaul repairs (if closure required) | | | |
| Utilities – | Less-than-significant | BMPs and other measures to minimize impacts are included in Section 5.7.1.1. | No |
| Utility disruptions | | | |</p>
<table>
<thead>
<tr>
<th>Estuary Alternative</th>
<th>Impact Finding</th>
<th>Minimization and Other Mitigation Measures</th>
<th>Significant and Unavoidable Adverse Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Services – Increased response times / travel times for emergency response and public service providers during construction of common elements (e.g., dredging)</td>
<td>Less-than-significant</td>
<td>BMPs and other measures to minimize impacts are included in Section 5.7.1.1.</td>
<td>No</td>
</tr>
</tbody>
</table>
| **Public Services** – Increased response times / travel times for emergency response and public service providers during short-term 5th Avenue Bridge detour | Less-than-significant | In addition to implementation of a CTMP and other measures described in the *Transportation Discipline Report*:
1. Prior to construction, consult with local police, fire, and emergency response providers to develop and implement emergency response plans, establish emergency vehicle routes, and ensure that general emergency management services are not compromised. | No |
| **Utilities** – Utility disruptions | Less-than-significant | BMPs and other measures to minimize impacts are included in Section 5.7.1.1. | No |

<table>
<thead>
<tr>
<th>Hybrid Alternative</th>
<th>Impact Finding</th>
<th>Minimization and Other Mitigation Measures</th>
<th>Significant and Unavoidable Adverse Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Services – Increased response times / travel times for emergency response and public service providers during construction of common elements (e.g., dredging)</td>
<td>Less-than-significant</td>
<td>BMPs and other measures to minimize impacts are included in Section 5.7.1.1.</td>
<td>No</td>
</tr>
<tr>
<td>Impact</td>
<td>Impact Finding</td>
<td>Minimization and Other Mitigation Measures</td>
<td>Significant and Unavoidable Adverse Impact</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Public Services – Increased response times / travel times for emergency response and public service providers during short-term 5th Avenue Bridge detour</td>
<td>Less-than-significant</td>
<td>Same as Estuary Alternative</td>
<td>No</td>
</tr>
<tr>
<td>Utilities – Utility disruptions</td>
<td>Less-than-significant</td>
<td>BMPs and other measures to minimize impacts are included in Section 5.7.1.1.</td>
<td>No</td>
</tr>
</tbody>
</table>

BMPs = best management practices; CTMP = Construction Traffic Management Plan.

Table ES.2 Summary of Operational Impacts (including Benefits) and Mitigation Measures

<table>
<thead>
<tr>
<th>Impact</th>
<th>Impact Finding</th>
<th>Minimization and other Mitigation Measures</th>
<th>Significant and Unavoidable Adverse Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action Alternative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Services – Increase in demand for emergency response services</td>
<td>No impact</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Utilities – Increase in likelihood that additional nutrient source reduction is required of LOTT and other dischargers</td>
<td>Significant</td>
<td>None identified.</td>
<td>N/A</td>
</tr>
<tr>
<td>Utilities – Impacts on low-lying utilities that could be physically affected during extreme river flood events</td>
<td>Significant</td>
<td>Ongoing coordination with Olympia Sea Level Rise Response Plan</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Managed Lake Alternative

<table>
<thead>
<tr>
<th>Impact</th>
<th>Impact Finding</th>
<th>Minimization and other Mitigation Measures</th>
<th>Significant and Unavoidable Adverse Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Services – Increase in the demand for emergency response services</td>
<td>Less-than-significant</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Utilities – Impacts on low-lying utilities that could be physically affected during extreme river flood events</td>
<td>Significant (reduced to less-than-significant with mitigation)</td>
<td>Measures to minimize impacts are included in Section 5.7.2.2. In addition: • Coordinate with the City of Olympia to assist the City with updated design parameters for the flood-proofing design of the Heritage Park berm in consideration of hydrologic modeling completed for this project.</td>
<td>No</td>
</tr>
<tr>
<td>Utilities – Increase in likelihood that additional nutrient source reduction is required of LOTT and other dischargers</td>
<td>Significant</td>
<td>None identified</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Estuary Alternative

<table>
<thead>
<tr>
<th>Impact</th>
<th>Impact Finding</th>
<th>Minimization and other Mitigation Measures</th>
<th>Significant and Unavoidable Adverse Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Services – Increase in the demand for emergency response services</td>
<td>Less-than-significant</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Impact</td>
<td>Impact Finding</td>
<td>Minimization and other Mitigation Measures</td>
<td>Significant and Unavoidable Adverse Impact</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Utilities – Potential impacts on low-lying utilities from saltwater exposure</td>
<td>Significant (reduced to less-than-significant with mitigation)</td>
<td>Measures to minimize impacts are included in Section 5.7.2.2. In addition: • Coordinate with local utility providers during their scheduled systemwide conditions assessments to ensure corrosion risks are identified and appropriate measures are in place to monitor, protect, or replace utilities at risk of corrosion.</td>
<td>No</td>
</tr>
<tr>
<td>Utilities – Impacts on low-lying utilities that could be physically affected during extreme tide flood events (reduced extent of overland flooding compared to No Action)</td>
<td>Less-than-significant</td>
<td>• Ongoing coordination with Olympia Sea Level Rise Response Plan</td>
<td></td>
</tr>
<tr>
<td>Utilities – Impacts to LOTT and other dischargers</td>
<td>No Impact</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Hybrid Alternative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Services – Increase in the demand for emergency response services</td>
<td>Less-than-significant</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Utilities – Potential impacts on low-lying utilities from saltwater exposure</td>
<td>Significant (reduced to less-than-significant with mitigation)</td>
<td>Same as Estuary Alternative</td>
<td>No</td>
</tr>
<tr>
<td>Impact</td>
<td>Impact Finding</td>
<td>Minimization and other Mitigation Measures</td>
<td>Significant and Unavoidable Adverse Impact</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Utilities – Impacts on low-lying utilities that could be physically affected during extreme tide flood events (reduced extent of overland flooding compared to No Action)</td>
<td>Less-than-significant</td>
<td>None identified</td>
<td>No</td>
</tr>
<tr>
<td>Utilities – Increase in likelihood that additional nutrient source reduction is required of LOTT and other dischargers</td>
<td>Less-than-significant</td>
<td>None identified</td>
<td>No</td>
</tr>
</tbody>
</table>
Table of Contents

Executive Summary

1.0 Introduction and Project Description

 1.1 PROJECT DESCRIPTION

 1.2 SUMMARY OF PROJECT ALTERNATIVES

Regulatory Context

2.0 Regulatory Context

 2.1 RESOURCE DESCRIPTION

 2.2 RELEVANT LAWS, PLANS, AND POLICIES

Methodology

3.0 Methodology

 3.1 SELECTION OF THE STUDY AREA

 3.2 DATA SOURCES AND COLLECTION

 3.3 ANALYSIS OF IMPACTS

Affected Environment

4.0 Affected Environment

 4.1 FIRE AND EMERGENCY SERVICES

 4.2 WATER, SEWER, AND STORMWATER UTILITIES

 4.3 ELECTRICITY, NATURAL GAS, AND TELECOMMUNICATIONS
5.0 Impacts and Mitigation Measures 5-1

5.1 OVERVIEW 5-1

5.2 NO ACTION ALTERNATIVE 5-1

5.3 IMPACTS COMMON TO ALL ACTION ALTERNATIVES 5-4

5.4 MANAGED LAKE ALTERNATIVE 5-5

5.5 ESTUARY ALTERNATIVE 5-8

5.6 HYBRID ALTERNATIVE 5-11

5.7 AVOIDANCE, MINIMIZATION, AND MITIGATION MEASURES 5-13

6.0 References 6-1

Exhibits

Tables

Table ES.1 Summary of Construction Impacts and Mitigation Measures ES-5

Table ES.2 Summary of Operational Impacts (including Benefits) and Mitigation Measures ES-7

Table 2.1 State Laws, Plans, and Policies 2-1

Table 2.2 Local Laws, Plans, and Policies 2-2

Table 4.1 Response Times and Total Number of Calls in 2018 4-1

Table 4.2 Type and Location of Outfalls 4-3

Table 5.1 Summary of Hydrodynamic Model Results for No Action Alternative – Water Levels under Representative Extreme River Flooding and 100-year Tide (with 2 feet of RSLR) 5-3

Table 5.2 Summary of Hydrodynamic Model Results for the Managed Lake Alternative – Water Levels under Representative Extreme River Flooding and 100-year Tide (with 2 feet of RSLR) 5-7

Table 5.3 Summary of Hydrodynamic Model Results for Estuary Alternative – Water Levels under Representative Extreme River Flooding and 100-year Tide (with 2 feet of RSLR) 5-10

Table 5.4 Summary of Hydrodynamic Model Results for Hybrid Alternative – Water Levels under Representative Extreme River Flooding and 100-year Tide (with 2 feet of RSLR) 5-12

Figures

Figure 1.1 Project Area 1-2

Figure 4.1 Capitol Lake Utility Lines and Pump Stations 4-4

Figure 4.2 Capitol Lake Stormwater Outfall Locations 4-5
List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronyms/Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BITP</td>
<td>Budd Inlet Treatment Plant</td>
</tr>
<tr>
<td>BPS</td>
<td>booster pump station</td>
</tr>
<tr>
<td>CMP</td>
<td>corrugated metal pipe</td>
</tr>
<tr>
<td>CTMP</td>
<td>Construction Traffic Management Plan</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>Enterprise Services</td>
<td>Washington State Department of Enterprise Services</td>
</tr>
<tr>
<td>HDPE</td>
<td>high-density polyethylene</td>
</tr>
<tr>
<td>I-5</td>
<td>Interstate 5</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>LOTT</td>
<td>Lacey, Olympia, Tumwater, and Thurston County</td>
</tr>
<tr>
<td>NAVD88</td>
<td>North American Vertical Datum 1988</td>
</tr>
<tr>
<td>OYLO</td>
<td>Olympia & Belmore Railroad, Inc.</td>
</tr>
<tr>
<td>PSE</td>
<td>Puget Sound Energy</td>
</tr>
<tr>
<td>RCW</td>
<td>Revised Code of Washington</td>
</tr>
<tr>
<td>RSLR</td>
<td>relative sea-level rise</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>WSDOT</td>
<td>Washington State Department of Transportation</td>
</tr>
<tr>
<td>WWTP</td>
<td>wastewater treatment plant</td>
</tr>
</tbody>
</table>
1.0 Introduction and Project Description

1.1 PROJECT DESCRIPTION

The Capitol Lake – Deschutes Estuary includes the 260-acre Capitol Lake Basin, located on the Washington State Capitol Campus, in Olympia, Washington. The waterbody has long been a valued community amenity. Capitol Lake was formed in 1951 following construction of a dam and provided an important recreational resource. Historically, the Deschutes Estuary was used by local tribes for subsistence and ceremonial purposes. Today, the expansive waterbody is closed to active public use. There are a number of environmental issues including the presence of invasive species, exceedances of water quality standards, and inadequate sediment management.

The Washington State Department of Enterprise Services (Enterprise Services) is responsible for the stewardship, preservation, operation, and maintenance of the Capitol Lake Basin. The 260-acre Capitol Lake Basin is maintained by Enterprise Services under long-term lease agreement from the Washington Department of Natural Resources.

In 2016, as part of Phase 1 of long-term planning, a group of stakeholders representing a broad range of interests, in collaboration with the state, identified shared goals for long-term management and agreed an Environmental Impact Statement (EIS) was needed to evaluate a range of alternatives and identify a preferred alternative. In 2018, the state began the EIS process. The Draft EIS was published on June 30, 2021, and evaluated four alternatives: a Managed Lake, Estuary, Hybrid, and a No Action Alternative.

The long-term management alternatives are evaluated against the shared project goals of improving water quality, managing sediment accumulation and future deposition, improving ecological functions, and enhancing community use of the resource. Refer to Figure 1.1 for the project area for long-term management.

Within the Final EIS, Enterprise Services has identified the Estuary Alternative as the preferred environmentally and economically sustainable long-term management alternative for the Capitol Lake – Deschutes Estuary. The EIS process has maintained engagement with the existing Work Groups, which include the local governments, resource agencies, and tribes. It also provides for expanded engagement opportunities for the public, such as a community sounding board.
Figure 1.1 Project Area
1.2 SUMMARY OF PROJECT ALTERNATIVES

1.2.1 Managed Lake Alternative

The Managed Lake Alternative would retain the 5th Avenue Dam and Bridge in its existing configuration. The 5th Avenue Dam would be overhauled to significantly extend the serviceable life of the structure. The reflecting pool within the North Basin would be maintained, and active recreational use would be restored in this area. Sediment would be managed through initial construction dredging and recurring maintenance dredging in the North Basin only. Sediment from construction dredging would be used to create habitat areas in the Middle Basin to support improved ecological function, habitat complexity, and diversity. Sediment would continue to accumulate and over time would promote a transition to freshwater wetlands in the South and Middle Basins. Boardwalks, a dock, and a boat launch would be constructed for community use.

This project would also construct a new, approximately 14-foot-wide non-vehicular bridge south of the existing 5th Avenue Bridge to provide a dedicated recreational trail connection.

Adaptive management would be needed to maintain water quality, improve ecological functions, and manage invasive species.

1.2.2 Estuary Alternative

Under the Estuary Alternative, the existing 5th Avenue Dam and Bridge would be removed, and an approximately 500-foot-wide (150-meter-wide) opening would be established in its place. This would reintroduce tidal hydrology to the Capitol Lake Basin, returning the area to estuarine conditions where saltwater from Budd Inlet would mix with freshwater from the Deschutes River. Sediment would be managed through initial construction dredging in the Capitol Lake Basin and recurring maintenance dredging within West Bay. Dredged materials from construction dredging would be used to create habitat areas in the Middle and North Basins to promote ecological diversity, though tideflats would be the predominant habitat type. Boardwalks, a dock, and a boat launch would be constructed for community use. This alternative also includes stabilization along the entire length of Deschutes Parkway to avoid undercutting or destabilization from the tidal flow. Existing utilities and other infrastructure would be upgraded and/or protected from reintroduced tidal hydrology and saltwater conditions.

The Estuary Alternative has been updated in the Final EIS to include a new 5th Avenue Bridge that would be constructed south of the existing 5th Avenue Dam and Bridge. The new bridge would include a vehicle lane, bike lane, and sidewalk in each direction, with the sidewalk on the south side providing a dedicated recreational trail connection. This bridge would be constructed and connected to the transportation system before the existing 5th Avenue Dam and Bridge are removed.

Adaptive management plans would be developed to improve ecological functions and manage invasive species during the design and permitting process.
1.2.3 Hybrid Alternative

Under the Hybrid Alternative, the existing 5th Avenue Dam and Bridge would be removed, and an approximately 500-foot-wide (150-meter-wide) opening would be established in its place. Tidal hydrology would be reintroduced to the western portion of the North Basin and to the Middle and South Basins. Within the North Basin, a curved and approximately 2,600-foot-long (790-meter-long) barrier wall with a walkway would be constructed to create an approximately 45-acre reflecting pool adjacent to Heritage Park. The reflecting pool of the Hybrid Alternative has been updated in the Final EIS to be groundwater-fed, rather than saltwater. Construction and maintenance of this smaller reflecting pool, in addition to restored estuarine conditions in part of the Capitol Lake Basin, gives this alternative its classification as a hybrid.

Sediment would be managed through initial construction dredging in the Capitol Lake Basin and recurring maintenance dredging within West Bay. In the Middle and North Basins, constructed habitat areas would promote ecological diversity, though tideflats would be the predominant habitat type. Boardwalks, a dock, and a boat launch would be constructed for community use. This alternative also includes stabilization along the entire length of Deschutes Parkway to avoid scour or destabilization. Existing utilities and other infrastructure would be upgraded and/or protected from reintroduced tidal hydrology and saltwater conditions.

The Hybrid Alternative would also construct a new 5th Avenue Bridge, as described for the Estuary Alternative, prior to removing the existing 5th Avenue Dam and Bridge.

Adaptive management plans would be needed to improve ecological functions, manage invasive species, and maintain water quality in the freshwater reflecting pool.

1.2.4 No Action Alternative

The No Action Alternative represents the most likely future expected in the absence of implementing a long-term management project. The No Action Alternative would persist if funding is not acquired to implement the Preferred Alternative. A No Action Alternative is a required element in a SEPA EIS and provides a baseline against which the impacts of the action alternatives (Managed Lake, Estuary, Hybrid) can be evaluated and compared.

The No Action Alternative would retain the 5th Avenue Dam in its current configuration, with limited repair and maintenance activities, consistent with the scope and scale of those that have received funding and environmental approvals over the past 30 years. In the last 30 years, the repair and maintenance activities have been limited to emergency or high-priority actions, which occur sporadically as a result of need and funding appropriations.

Although Enterprise Services would not implement a long-term management project, current management activities and ongoing projects in the Capitol Lake Basin would continue. Enterprise Services would continue to implement limited nuisance and invasive species management strategies.
In the absence of a long-term management project, it is unlikely that Enterprise Services would be able to procure funding and approvals to manage sediment, improve water quality, improve ecological functions, or enhance community use. The No Action Alternative does not achieve the project goals.

Construction Methods for the Action Alternatives.

This impact analysis relies on the construction method and anticipated duration for the action alternatives, which are described in detail in Chapter 2 of the EIS.
2.0 Regulatory Context

2.1 RESOURCE DESCRIPTION

The public services and utilities considered in this analysis include: (1) fire and emergency response services; (2) water, stormwater, and sewer utilities; and (3) electricity, natural gas, and telecommunications. The following section describes the regulatory context of the project alternatives on public services and utilities.

2.2 RELEVANT LAWS, PLANS, AND POLICIES

Public services and utilities within the study area are protected or regulated by a variety of state laws, plans, and policies (Section 2.2.1) and local plans and policies (Section 2.2.2). There are no applicable federal laws, plans, and policies that regulate public services and utilities.

2.2.1 State

State laws that address the development of public services and utilities in Washington State are listed and described in Table 2.1.

Table 2.1 State Laws, Plans, and Policies

<table>
<thead>
<tr>
<th>Regulatory Program or Policies</th>
<th>Lead Agency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title 80 Revised Code of Washington: Public Utilities</td>
<td></td>
<td>Compilation of Washington State laws that are applicable to public utilities.</td>
</tr>
</tbody>
</table>
2.2.2 Local

The municipalities of Olympia and Tumwater have developed comprehensive plans and codified ordinances to provide a framework for the development and management of public services and utilities within their jurisdictions. The City of Olympia; Lacey, Olympia, Tumwater, and Thurston County (LOTT) Clean Water Alliance; and the Port of Olympia have developed a Sea Level Rise Response Plan for downtown Olympia, that in part, addresses adaptation measures needed to protect utility infrastructure from sea-level rise (LOTT et al. 2019). Additionally, Thurston County, Olympia, and Tumwater have developed emergency management plans to address emergency events such as floods, fire and other natural disasters within their jurisdictions. Local laws, plans, and policies are listed and described in Table 2.2.

Table 2.2 Local Laws, Plans, and Policies

<table>
<thead>
<tr>
<th>Regulatory Program or Policies</th>
<th>Lead Agency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thurston County Comprehensive Emergency Management Plan</td>
<td>Thurston County</td>
<td>“The purpose of this Plan is to guide County government behavior before, during and after a disaster. It develops and describes a comprehensive program that defines who does what, when, where and how in order to mitigate, prepare for, respond to and recover from the effects of natural, technological and human-caused hazards” (Thurston County 2015).</td>
</tr>
<tr>
<td>Olympia Comprehensive Plan 2014; Tumwater Comprehensive Plan 2016</td>
<td>City of Olympia, City of Tumwater</td>
<td>Provide information regarding future land uses and the policy framework for development related to public utilities and management of public services (City of Olympia 2014, City of Tumwater 2016).</td>
</tr>
<tr>
<td>Olympia Municipal Code Title 13 (Public Services); Thurston County Title 15 (Public Works); Tumwater Municipal Code Title 13 (Public Services)</td>
<td>City of Olympia, Thurston County, City of Tumwater</td>
<td>Provide the regulatory framework for development related to public utilities and management of public services.</td>
</tr>
<tr>
<td>City of Olympia Comprehensive Emergency Management Plan 2016</td>
<td>City of Olympia</td>
<td>Defines policies and procedures for efficient and effective emergency responses to protect property and preserve lives (City of Olympia 2016).</td>
</tr>
<tr>
<td>Olympia Sea Level Rise Response Plan</td>
<td>City of Olympia, Port of Olympia, and LOTT Water Quality Alliance</td>
<td>Sea-level rise projections for the study area, infrastructure vulnerability by neighborhood, and specific proposed adaptation actions.</td>
</tr>
<tr>
<td>City of Tumwater Comprehensive Emergency Management Plan</td>
<td>City of Tumwater</td>
<td>The mission of plan is “to take appropriate actions to mitigate, prepare for, respond to and recover from all natural and manmade disasters within its jurisdiction” (City of Tumwater 2010).</td>
</tr>
</tbody>
</table>
3.0 Methodology

3.1 SELECTION OF THE STUDY AREA

The project area includes the water, shorelines, open space, and industrial areas immediately adjacent to Capitol Lake, extending from Tumwater Falls through West Bay within Budd Inlet (Figure 1.1).

The study area for the public services and utilities analysis includes the project area and adjacent areas where water, stormwater, and wastewater infrastructure as well as local utility providers (electricity, natural gas, telecommunications) and emergency service providers could be affected by construction or operation of the project. The study area includes all potential staging and construction areas.

3.2 DATA SOURCES AND COLLECTION

Data and information sources used for the public services and utilities analysis include inventories of sewer and water lines, storm drains, underground gas lines, fiber-optic conduit, electrical transmission lines, and emergency services from local planning documents. The Hydrodynamics and Sediment Transport Discipline Report prepared by Moffatt & Nichol (2022) was also utilized.

3.3 ANALYSIS OF IMPACTS

This impacts analysis considers the potential impacts on public services and utilities from the three action alternatives and the No Action Alternative. The analysis takes into account the potential for activities to temporarily interrupt, require the replacement or relocation of utilities, or result in service disruptions. Impacts on response times of emergency services and other public services were also considered in this analysis.

3.3.1 Identification of Construction Impacts

Construction impacts analyzed included activities that could temporarily interrupt utilities and create longer response times for public services in the area. This analysis qualitatively assesses where construction impacts would have the greatest potential to impact utilities adjacent to the project area and public services in the area. Potential long-term impacts are described under Operational Impacts.
Factors considered for the analysis of construction effects on utilities included interruptions and temporary outages from the relocation or replacement of infrastructure or facilities that provide water, refuse services, electricity, natural gas, or telecommunications.

Factors considered for the analysis of construction effects on public services included the increased demands on emergency services, and the project’s potential to alter or hinder the timely provision of emergency services or other public services during construction.

For this analysis, short-term (construction) impacts on utilities are considered less-than-significant or significant, as follows:

- **Less-than-Significant**—Impacts are considered less-than-significant if interruptions from construction on existing utilities could be addressed through temporary connections or other means and would only result in minimal effects on service.

- **Significant**—Impacts are considered significant if construction required the replacement or relocation of infrastructure or facilities for water, wastewater, stormwater, electricity, natural gas, or telecommunications that could result in long-term interruptions in service or adverse environmental effects.

For this analysis, short-term (construction) impacts on public services are considered less-than-significant or significant, as follows:

- **Less-than-Significant**—Impacts are considered less-than-significant if construction causes temporary or short-term changes in response times or requires response from public service providers with no long-term changes.

- **Significant**—Impacts are considered significant if construction creates a demand for public services that substantially exceeds the capacity of public service agencies (by increasing response times or requiring large increases in staff).

3.3.2 Identification of Operational Impacts

Operational impacts analyzed include activities that could create permanent or long-term interruptions to utilities and create longer response times for public services in the area. This analysis qualitatively assesses where operational impacts would have the greatest potential to impact utilities adjacent to the project and public services in the area. This discipline report also addresses how project alternatives could change how relative sea-level rise (RSLR) and climate change affect public services and utilities in the study area. Sea-level rise and river flood projections were incorporated into the hydrologic modeling and assumed as part of future conditions (see the *Hydrodynamics and Sediment Transport Discipline Report* [Moffatt & Nichol 2022] for further information).

Factors considered for the analysis of operational effects are the same as those described under construction impacts.
For this analysis, long-term (operational) impacts on utilities are considered less-than-significant or significant, as follows:

- **Less-than-Significant**—Impacts are considered less-than-significant if the project would not result in service interruptions, or impacts could be addressed through temporary connections or other means and would only result in minimal effects on service.

- **Significant**—Impacts are considered significant if the project has the potential to damage existing utilities or interrupt utility service, creating permanent or long-term interruptions to services. Impacts are also considered significant if the project would require substantial changes to utilities to fulfill service requirements.

For this analysis, long-term (operational) impacts on public services are considered less-than-significant or significant, as follows:

- **Less-than-Significant**—Impacts are considered less-than-significant if demand on public services remained similar to the current demand or within the service capacity of the existing area.

- **Significant**—Impacts are considered significant if the project would create a demand for public services that substantially exceeds the capacity of public service agencies (by increasing response times or requiring large increases in staff).

The analysis also considered the potential for beneficial effects, primarily related to the decreased risk of flooding to utilities. Long-term beneficial effects were considered minor, moderate, or substantial based on best professional judgement.
4.0 Affected Environment

4.1 FIRE AND EMERGENCY SERVICES

The Olympia Fire Department and Tumwater Fire Department provide emergency fire and medical services to the study area.

Most of the study area is located within Olympia Fire Districts 1 and 2, with a very small portion located within District 3 (City of Olympia Fire Department 2018). Each district is served by a fire station. The southern portion of the study area is located within the service area of the City of Tumwater Fire Department. No fire stations are located within the study area; however, multiple stations are located within 1 mile of the study area, which ensures a timely response to incidents in the area. Table 4.1 shows the average response time and total calls for each fire district.

Table 4.1 Response Times and Total Number of Calls in 2018

<table>
<thead>
<tr>
<th>Fire District (City of Olympia)</th>
<th>Total Calls (2018)</th>
<th>Average Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>District 1</td>
<td>4,187</td>
<td>06:32 minutes</td>
</tr>
<tr>
<td>District 2</td>
<td>3,940</td>
<td>07:41 minutes</td>
</tr>
<tr>
<td>District 3</td>
<td>1,256</td>
<td>07:56 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fire Department (City of Tumwater)</th>
<th>Total Calls (2018)</th>
<th>Average Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 1 and 2</td>
<td>2,811</td>
<td>06:45 minutes (Station 1) 05:74 minutes (Station 2)</td>
</tr>
</tbody>
</table>

Source: City of Olympia Fire Department 2018; C. Blakeway, personal communication, 2020.

There are no hospitals located within the study area. The nearest hospital is Capital Medical Center, approximately 1.5 miles west of the study area.

Four law enforcement agencies have jurisdictions that overlap the study area, including the Olympia Police Department, Tumwater Police Department, Thurston County Sheriff, and Washington State Patrol. All stations and other facilities are located outside of the study area. County sheriffs are
responsible for maintaining the peace within their respective counties (Revised Code of Washington [RCW] 36.28.010) and filing complaints within their jurisdictions (RCW 36.28.011). Washington State Patrol has jurisdictions over state roadways (Interstate 5 [I-5] and US Highway 101) and the Capitol Campus.

4.2 WATER, SEWER, AND STORMWATER UTILITIES

The City of Olympia has a network of wells, springs, reservoirs, pumps, and distribution lines to supply its residents with water. The primary source of water for Olympia is McAllister Springs; secondary water sources for the city are provided by six additional wells (City of Olympia 2014). Two booster pump stations (BPS) (West Bay BPS and Percival BPS) are located within the study area (City of Olympia 2014). Water lines within the study area include a potable waterline that is routed across the 5th Avenue Bridge, an 8-inch line routed along Deschutes Parkway, and a 16-inch line that is routed under Marathon Park and suspended from the pedestrian bridge adjacent to the Olympia & Belmore Railroad, Inc. (OYLO) railroad (Moffatt & Nichol 2020). The 8-inch and 16-inch water lines are both made of ductile iron (Moffatt & Nichol 2008).

According to the City of Tumwater’s current Water System Plan (2010), the City of Tumwater water system includes 12 groundwater wells, five reservoirs in three pressure zones, three booster stations, and a pipeline distribution network (2010). The main source of water for the City of Tumwater is the Palmero Wellfield, with the Bush Wellfield providing supplemental water. Tumwater has three water zones; the study area is located in Zone 350 (City of Tumwater 2020).

The wastewater systems for both the Cities of Olympia and Tumwater include gravity pipes, pressure pipes, and pump stations. The Olympia Wastewater Utility and Tumwater Water Resources Divisions are responsible for collecting and conveying wastewater flows to regional treatment facilities operated by the LOTT Clean Water Alliance (LOTT). The Budd Inlet Treatment Plant (BITP) is LOTT’s main treatment facility, processing approximately 14 million gallons of wastewater on an average day. The BITP, located between downtown Olympia and the Port of Olympia, discharges treated water through an outfall in the West Bay of Budd Inlet, and also provides reclaimed water.

After the LOTT BITP generates reclaimed water to Class A standards, the City purveys it to four Olympia customers, primarily for irrigation. LOTT also infiltrates Class A reclaimed water at its Hawks Prairie groundwater recharge facility in Lacey, outside the City limits. A LOTT reclaimed water force main is routed on the western side of the Middle Basin and around the North Basin crossing at the 5th Avenue Bridge and between the North and Middle Basins near Heritage Park. LOTT also owns and maintains a 12- to 18-inch reclaimed water distribution line that is routed along the eastern shoreline of the North Basin, crossing between the North and Middle Basins near Heritage Park along the pedestrian walkway bridge, and running along the western shoreline of the Middle Basin into Tumwater (Brown and Caldwell 2010).

Olympia’s sewer gravity mains range from 6 inches to 24 inches in diameter, with most pipelines located in the outer portions of the study area. Flow from West Olympia is conveyed across the 4th Avenue Bridge via an 18-inch sewer gravity main. Once flows reach the east end of the bridge, they split
between the 18-inch main and 15-inch overflow line (City of Olympia 2019a). Two lift stations are located adjacent to the North and Middle Basins, one at the south end of Budd Inlet east of the 4th Avenue Bridge and the other (Percival Pump Station) near the southwestern portion of the North Basin. A LOTT sewer gravity main flows into the Percival Pump Station from the southwest (City of Olympia 2014). Other sanitary sewer infrastructure within the study area includes a 22-inch HDPE gravity line to the west of the Middle Basin, a 20- to 24-inch force main routed to the west of the North Basin and across the 5th Avenue Dam, and a 24-inch ductile iron pipe under the pedestrian bridge adjacent to the railroad trestle (Moffatt & Nichol 2008).

In the Tumwater portion of the study area, a water treatment structure is located just south of the junction between I-5 and US Highway 101, adjacent to the east side of I-5 (City of Tumwater 2018). Three wastewater lift stations (also referred to as pump stations) are located in the vicinity of the South Basin (see Figure 4.1). Most of the water lines and sewer lines within the study area are made of ductile iron (Moffatt & Nichol 2008).

According to the City of Olympia’s Storm and Surface Water Utility Plan (2017) and the City of Tumwater’s Comprehensive Stormwater Management Plan (2018), the storm system for each city includes a system of catch basins, conveyance, and outfalls. Within the study area, there are approximately 74 corrugated metal (steel) pipe (CMP) stormwater outfall sites, of which 63 are located within the shoreline of Capitol Lake. In addition to outfalls within the Olympia and Tumwater storm systems, state-owned and privately owned outfalls discharge to the lake.

Table 4.2 and Figure 4.1 display wastewater, water, and stormwater lines and structures located in the project area. Figure 4.2 displays the type and location of each outfall.

Table 4.2 Type and Location of Outfalls

<table>
<thead>
<tr>
<th>Type of Outfall</th>
<th>Total</th>
<th>Number in North Basin</th>
<th>Number in Middle Basin</th>
<th>Number in South Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSDOT Outfall Sites</td>
<td>12</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Enterprise Services Outfall Sites</td>
<td>24</td>
<td>8</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Olympia Outfall Sites</td>
<td>22</td>
<td>19</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Brewery Outfall Sites</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tumwater Outfall Sites</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Seeps or Other Outfalls</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

WSDOT = Washington State Department of Transportation.

Source: TRPC 2003
Increased flooding due to extreme river flows and/or sea-level rise causes operational concerns for utility infrastructure in addition to posing a physical damage and access risk. A major concern in downtown Olympia is the impact of floodwaters on stormwater infrastructure operations. Olympia has a combined sanitary sewer and stormwater system, which means that when floodwaters enter storm drains, generally the water is routed to the BITP on the East Bay of Budd Inlet. Increased groundwater elevations due to sea-level rise can also cause excess infiltration into sanitary sewer mains. Contributions of floodwater to the stormwater system impact the processing capacity of the BITP and increase the likelihood of bypassing events, where untreated or partially treated wastewater is discharged directly to Budd Inlet. The overwhelmed sanitary-stormwater system can back up sewer mains and potentially flood buildings and street drains with untreated sewage. At high levels of sea-level rise, overland flooding may directly impact onsite operations at BITP. Stormwater that is not routed to BITP and instead drains to Capitol Lake may be unable to do so when water elevations are high. This problem will become more frequent with sea-level rise.

To prevent backflow of floodwaters into the storm system, the City of Olympia is installing valves and gates in City outfalls that discharge to the Capitol Lake Basin as part of the Olympia Sea Level Response Plan to address existing flood vulnerabilities of downtown and the combined sewer system (City of Olympia 2019). Shoreline elevations along Capitol Lake are approximately 13 to 14 feet NAVD88, compared to the current 100-year flood elevation of approximately 15 feet. In the near term, flooding is managed through flood event emergency response activities, installing backflow prevention on key stormwater outfalls and pipes, and minor landscaping of low spots to lessen flood impacts. However, even with these actions, low-lying areas within and adjacent to Heritage Park will remain vulnerable to flooding during infrequent, high-discharge flood events in the Deschutes Watershed.

The Olympia Sea Level Rise Response Plan acknowledges a number of other actions that may be required in the long term to address the impacts of sea-level rise on the City's stormwater system. In the future, sea-level rise may reduce the capacity of the stormwater system to discharge street runoff, especially during combined rainfall and flood events. To address this, the number of stormwater outfalls could be reduced by rerouting stormwater pipes to fewer, consolidated outfalls along the Capitol Lake shoreline, and pumps could be installed to discharge stormwater against higher Capitol Lake water levels (City of Olympia 2019).

4.3 ELECTRICITY, NATURAL GAS, AND TELECOMMUNICATIONS

Puget Sound Energy (PSE) is the primary electricity and natural gas service provider to the cities of Olympia and Tumwater. PSE generates its electricity from a variety of sources including renewables (wind, solar, hydro, and co-generation) as well as gas, oil, and coal-fired plants (Thurston County 2019). Both electric lines and natural gas lines are located within the study area. Most of the electrical lines are located aboveground (Moffatt & Nichol 2008).

PSE power lines cross the 5th Avenue Bridge and the southeastern portion of the South Basin (City of Olympia 2014). In the 5th Avenue Bridge vicinity, east-west aligned overhead power lines cross over the 4th Avenue W bridge and the southerly end of West Bay before splitting to the northwest and
southwest, just east of the Olympic Street W and Deschutes Parkway fork. Within the study area, natural gas lines are buried and strung under the 5th Avenue Bridge.

A steam plant occupies the shoreline at the northeast edge of the Middle Basin. Known as the Powerhouse, the plant has produced steam since the 1920s serving east and west Capitol Campus with nearly 3 miles of steam and condensation piping providing steam to 12 of the 19 campus buildings. There is no functional relationship between the stream plant and Capitol Lake.

The primary provider of telecommunication services in the study area is Qwest Corporation, which does business as CenturyLink QC. A number of other private companies (e.g., AT&T, Verizon, Comcast, and Ziply) also maintain fiber optic cables and provide service throughout the area.
5.0 Impacts and Mitigation Measures

5.1 OVERVIEW

This section describes the probable impacts from the No Action Alternative and the action alternatives (Managed Lake, Estuary, and Hybrid Alternatives) on public services and utilities. This section also identifies mitigation measures that could avoid, minimize, or reduce the identified impact below the level of significance.

5.2 NO ACTION ALTERNATIVE

The No Action Alternative would not result in construction impacts on public services and utilities because the project would not be built. As a result, it would not require road closures and diversions in the project vicinity. Therefore, this alternative would not slow or stop emergency vehicles, and would have no effect on emergency-response time. The No Action Alternative would involve continuing current management practices and retaining the Capitol Lake Basin in its current configuration.

5.2.1 Impacts from Operation

5.2.1.1 Public Services

The No Action Alternative would not result in any operational impacts on public services. This alternative would not enhance recreation facilities or uses in the study area. Therefore, this alternative would not attract additional visitors to the study area. As a result, it would not increase the demand for police services and other emergency response.

5.2.1.2 Utilities

Ongoing maintenance of the 5th Avenue Dam would not require any utility replacements or relocations. There would be no impacts on existing underground or overhead utilities as no relocations would be required.
In June 2022, Ecology issued a Budd Inlet Total Maximum Daily Load (TMDL) for Dissolved Oxygen (DO) (Water Quality Improvement Report and Implementation Plan). The TMDL identifies several specific sources of pollution that result in low DO levels in Budd Inlet, the largest of which is Capitol Lake (Ecology 2022). The model predicted “widespread and continuous depletion” of DO throughout Inner Budd Inlet due to the existing dam. This depletion of DO caused by the dam was attributed to a combination of factors (Ecology 2015). See Section 4.1.4.2 of the Water Quality Discipline Report for additional information (Herrera 2022). Four wastewater treatment plants (WWTPs) discharge directly into Budd Inlet and also contribute to low DO conditions. Their permits require them to remove organic compounds from wastewater before discharging it. LOTT, the largest WWTP within the watershed, has additional treatment processes in place that remove nitrogen from its effluent, although WWTPs are unable to remove all nutrients from the water before discharge.

The Budd Inlet TMDL states that “Unless approved by the Department of Ecology, DES [Enterprise Services] may not deplete dissolved oxygen levels in Budd Inlet at any time or location beyond the impact of the natural estuary condition…… if DES continues to manage the waterbody differently than the natural estuary condition, Capitol Lake must not cause water quality standards violations at any time or location in Budd Inlet.” Ecology established this waste load allocation to improve water quality and reduce nutrient loading in Budd Inlet. The waste load allocations for other dischargers, including LOTT, are based on the assumption that Enterprise Services would meet the natural estuary conditions.

The No Action Alternative would have an impact greater than that of a natural estuary condition. Because the No Action Alternative would not meet the waste load allocation, Ecology would likely need to enforce a reduction in pollutant loading from other point and nonpoint source dischargers that discharge to Budd Inlet.

LOTT and other nutrient sources within the Capitol Lake Basin, including stormwater dischargers, would likely have to improve water quality of their discharge sooner under the No Action Alternative than they would if the basin were reverted to a “natural estuary” condition. LOTT would likely need to remove additional nutrients from its wastewater discharge by investing in additional water treatment capacity. Because the No Action Alternative would likely require this additional treatment sooner than the other project alternatives, LOTT would have less time to plan and save for this investment, resulting in an increased cost to ratepayers sooner. The increased likelihood of additional treatment being needed sooner and resulting additional costs would result in a significant impact to LOTT under the No Action Alternative. See the Economics Discipline Report (Attachment 18 of the Final EIS) for more information on anticipated economic impacts for LOTT.

Certain utilities can be physically and/or operationally affected by overland flooding. Flooding in the Capitol Lake Basin and surrounding areas occurs through two main routes: (1) overland flooding from Budd Inlet into downtown Olympia, and (2) overland flooding from the Capitol Lake Basin. The extent of downtown flooding from Budd Inlet is not affected by the project alternatives. However, the extent of overland flooding from Capitol Lake Basin is affected by the project alternatives and can be a result of extreme river flood events or extreme tidal flooding events with RSLR.
Under the No Action Alternative, the model results show that there would be continued and increased extreme river flooding, placing stormwater utilities and aboveground utility structures at continued and potentially increasing risk. This flooding would occur in low-lying areas along the entire perimeter of the Capitol Lake Basin. However, the majority of utilities that may be affected by overland flooding are on the eastern shore of the North Basin, in the vicinity of Heritage Park and Powerhouse Road. Overland flooding from Capitol Lake Basin for the modeled, representative extreme river flood event (and with 2 feet RSLR) results in water surface elevations in the downtown area of up to 17.4 NAVD88 (Table 5.1). This elevation exceeds the current flood-proofing elevations set in the Olympia Sea Level Response Plan [preliminary design for the Heritage Park redesign (17.0 feet)].

Table 5.1 Summary of Hydrodynamic Model Results for No Action Alternative – Water Levels under Representative Extreme River Flooding\(^1\) and 100-year Tide (with 2 feet of RSLR)\(^2\)

<table>
<thead>
<tr>
<th>Flood Event</th>
<th>Location</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event #1 - Extreme River Flood Event (with RSLR)</td>
<td>Max. Level in Capitol Lake Basin</td>
<td>+21.0</td>
</tr>
<tr>
<td></td>
<td>Max. Level at Heritage Park (North Basin)</td>
<td>+17.4</td>
</tr>
<tr>
<td>Event #2 - 100-year Tide (with RSLR)</td>
<td>Max. Level in Capitol Lake Basin</td>
<td>+16</td>
</tr>
<tr>
<td></td>
<td>Max. Level at Heritage Park (North Basin)</td>
<td>+10.8</td>
</tr>
</tbody>
</table>

Source: Hydrodynamics and Sediment Transport Discipline Report (Moffatt & Nichol 2022)

1. A +100-yr Deschutes River flow combined with a 1-yr tide (with 2-ft RSLR). To represent a more conservative scenario (and capture possible increase in extreme flow events resulting from climate change), a 100-yr (15-min average) discharge of 341 m\(^3\)/s was used as a constant inflow value at the Deschutes River boundary and a 100-yr discharge of 15 m\(^3\)/s calculated from the Deschutes River boundary with a scaling factor applied at the Percival Creek boundary as a constant inflow value.

2. A 1-yr Deschutes River flow combined with a 100-yr tide (with 2-ft RSLR).

As described in Section 4.2, a major concern in downtown Olympia is the impact of floodwaters on stormwater infrastructure operations. Contributions of floodwater to the stormwater system reduce the processing capacity of the BITP and increase the likelihood of bypassing events, where untreated or partially treated wastewater is discharged directly to Budd Inlet. Additionally, stormwater that is not routed to BITP and instead drains to Capitol Lake may be unable to do so when water elevations are high. This problem is expected to become more frequent with future extreme river flood events under the No Action Alternative.

As described in Section 4.2, in the near term, the City of Olympia manages stormwater system impacts through flood event emergency response activities, installing backflow prevention on key stormwater outfalls and pipes, and minor landscaping of low spots to reduce flood impacts. Even with these actions, however, low-lying areas within and adjacent to Heritage Park will remain vulnerable to
flooding during infrequent, high-discharge flood events. This flooding could affect stormwater infrastructure and could result in the need for increased capacity or more active management of increasing peak flows entering the BITP.

The City of Olympia, LOTT, and Port of Olympia have outlined measures that would be implemented at different sea level rise projections as part of the Olympia Sea Level Rise Response Plan. Overland flooding modeled from Capitol Lake Basin for the extreme river flood event under the No Action Alternative results in water surface elevations in the downtown area that exceed the current flood-proofing elevations set in the Olympia Sea Level Response Plan. It is recognized that the Sea Level Rise Response Plan is adaptable to future decisions made about the long-term management of Capitol Lake. Regardless of the future of Capitol Lake, the Sea Level Rise Response Plan describes that the eastern shoreline along Heritage Park will need to be modified to prevent future downtown flooding. The plan recognizes that different alternatives could present subtle changes in how the shoreline is modified to address sea level rise. Given the adaptability built into the Sea Level Rise Response Plan, it is anticipated that future flooding predicted in the Heritage Park area would be mitigated by the improvements under the plan. This assumes ongoing coordination between Enterprise Services and the City of Olympia to assist the City with updated design parameters for the flood-proofing design of the Heritage Park berm in consideration of hydrologic modeling completed for this project.

5.3 IMPACTS COMMON TO ALL ACTION ALTERNATIVES

All action alternatives – Managed Lake, Estuary, and Hybrid – have construction impacts associated with the following:

- Initial dredging and habitat area creation
- Construction of boardwalks, dock, and boat launch
- Construction staging and access

5.3.1 Impacts from Construction

5.3.1.1 Public Services

During the construction of common elements, public services would be affected by a nominal increase in traffic congestion and delays on the primary roads affected by construction and on roads around the construction area. Ongoing construction activities over a period of 4 to 8 years, depending on the action alternative, could result in temporary lane closures, increased truck traffic, and other roadway effects.

As described in the Transportation Discipline Report, the contractor(s) would prepare and implement a Construction Traffic Management Plan (CTMP) and Traffic Control Plan for construction activities that may affect road right-of-way. Measures typically used in traffic control plans include advertising of planned lane closures, warning signage, a flag person to direct traffic flows when needed, and methods to ensure continued access by emergency vehicles. Other mitigation measures include notifying local
emergency response departments of construction. These measures would help to minimize any potential impacts on emergency response times and existing service. With these measures, impacts on emergency response during the construction of common elements would be **less-than-significant**.

5.3.1.2 Utilities

All action alternatives would require the temporary use of power during construction to power construction trailers and equipment. Construction crews would likely use onsite generators or existing electricity infrastructure provided by PSE. This would be unlikely to result in interruptions in service and would not affect any other existing utilities.

Although no public utilities have been identified within the areas of the Capitol Lake Basin proposed for initial dredging, habitat area establishment, and boardwalk/dock/launch construction, a number of utilities cross the project area or are adjacent to construction sites. Streets, roads, and bridges in the project area serve as utility corridors. Overhead utility poles and lines could be susceptible to accidental damage from the movement of large construction equipment and vehicles throughout the project area. Accidental damage to utility lines during project construction could temporarily disrupt utility services. The construction contractor(s) would be required to: confirm the location of existing utilities and mark the confirmed locations accurately on the final construction drawings; work with utility service providers to minimize the risk of damage to existing utility lines and ensure prompt reconnection of service in the event of a service disruption; and take special precautions when working near high-risk utility lines, including tailgate meetings with contractor staff on days when work will occur near high-risk (high-priority) utilities.

With implementation of measures to locate and confirm utility locations and to coordinate final construction plans with the affected utilities, impacts on utilities would be **less-than-significant**.

5.4 MANAGED LAKE ALTERNATIVE

5.4.1 Impacts from Construction

5.4.1.1 Public Services

Construction impacts of the Managed Lake Alternative on emergency response times would generally be the same as described in Section 5.3.1, but would also include impacts related to the potential closure of the 5th Avenue Bridge for a short period of time. If closure of the 5th Avenue Bridge is needed during some or all of the period jet grouting, and a temporary connection between 4th Avenue and Deschutes Parkway is not constructed, all detoured vehicles would be required to use routes around the south end of the Middle Basin. Based on fire station locations in downtown Olympia relative to their district area (Fire District 1) and West Olympia (Fire District 2), service calls within those districts typically do not require an east–west crossing. However, during multiple or large-scale events, any fire district can respond, which could require travelling east–west, potentially requiring the use of detour routes around the south end of the Middle Basin. Emergency response times for emergency vehicles
that would need to respond through that area would likely increase for an estimated 7 weeks. Given the short duration, impacts are anticipated to be less-than-significant.

5.4.1.2 Utilities

The overhaul repairs to the 5th Avenue Dam would require the replacement or overhaul of electrical systems within the dam; however, no utility conflicts are anticipated, and no utilities would be relocated. As much as possible, piers associated with the new non-vehicular bridge would be located to avoid conflicting with underground utilities. As a result, there would be no impacts on public services or utilities. All other impacts related to the potential disruption of utility service during construction would be less-than-significant, as described in Section 5.3.1 for all action alternatives.

5.4.2 Impacts from Operation

5.4.2.1 Public Services

The Managed Lake Alternative would enhance recreation facilities and could attract additional visitors to the study area. Therefore, it could increase the demand for emergency response services. However, any visitor increase, if it were to occur, would be relatively minor and not expected to require a substantial increase in emergency response services. Therefore, the impact on emergency response would be less-than-significant.

5.4.2.2 Utilities

The Managed Lake Alternative would involve recurring maintenance dredging and adaptive management actions to maintain water quality and ecological conditions. None of these activities are anticipated to result in damage to utilities or service interruptions. Recurring maintenance dredging could require the use of temporary power, such as onsite generators or use of existing electricity.

Decontamination stations would be installed at Marathon Park and the Interpretive Center to avoid and minimize the potential spread of aquatic invasive species from watercraft that would be reintroduced to the waterbody. These decontamination stations require the extension of buried electric lines and water lines to the station locations, but would require only minor amounts of electricity and water to operate. Electricity required to power the dam would remain at existing levels. Permanent lighting would be needed along the non-vehicular bridge. At the current level of design, the lighting system has not been specified. The final design of the alternative will include a low-energy lighting system and include low wattage lights such as light-emitting diode (LED) lamps and, if feasible, would be solar powered.

As a result, no direct impacts on utilities are anticipated from the operation of the Managed Lake Alternative.

Same as the No Action Alternative, maximum water levels predicted under the Managed Lake Alternative would be primarily driven by extreme river flooding. Under modeled representative extreme river flood conditions (with 2 feet of RSLR), maximum water levels for the Managed Lake
Alternative would be 17.7 feet NAVD88, slightly (≤1 foot) higher than that of the No Action Alternative (Table 5.2). Consequently, there would be a slightly greater extent of upland flooding under the Managed Lake Alternative. This is most likely due to a net reduction in flood storage capacity for the Managed Lake Alternative due to the creation of habitat areas in the Middle Basin, despite the North Basin dredging.

Table 5.2 Summary of Hydrodynamic Model Results for the Managed Lake Alternative – Water Levels under Representative Extreme River Flooding and 100-year Tide (with 2 feet of RSLR)

<table>
<thead>
<tr>
<th>Flood Event</th>
<th>Location</th>
<th>No Action Alternative</th>
<th>Managed Lake Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event #1 - Extreme River Flood Event (with RSLR)</td>
<td>Max. Level in Capitol Lake Basin</td>
<td>+21.0</td>
<td>+21.3</td>
</tr>
<tr>
<td></td>
<td>Max. Level at Heritage Park (North Basin)</td>
<td>+17.4</td>
<td>+17.7</td>
</tr>
<tr>
<td>Event #2 - 100-year Tide (with RSLR)</td>
<td>Max. Level in Capitol Lake Basin</td>
<td>+16</td>
<td>+16.4</td>
</tr>
<tr>
<td></td>
<td>Max. Level at Heritage Park (North Basin)</td>
<td>+10.8</td>
<td>+10.2</td>
</tr>
</tbody>
</table>

Source: Moffatt & Nichol 2020

As with the No Action Alternative, the predicted maximum water levels exceed the flood-proofing elevations set in the Olympia Sea Level Response Plan [preliminary design for the Heritage Park redesign (17.0 feet)]. Therefore, flooding from extreme river flood events is also not mitigated by the current Olympia Sea Level Rise Response Plan under the Managed Lake Alternative. Same as the No Action Alternative, flooding could affect stormwater infrastructure and could result in the need for increased capacity or more active management of increasing peak flows entering the BITP. Impacts would be potentially significant on stormwater and other utilities that could be physically or operationally affected during extreme river flood events. Same as the No Action Alternative, it is anticipated that future flooding predicted in the Heritage Park area would be mitigated by the improvements under the Sea Level Response Plan. This assumes ongoing coordination between Enterprise Services and the City of Olympia to assist the City with updated design parameters for the flood-proofing design of the Heritage Park berm in consideration of hydrologic modeling completed for this project.

Same as the No Action Alternative, the Managed Lake Alternative would retain Capitol Lake Basin in its current configuration. As described above for the No Action Alternative, the Budd Inlet TMDL states that Enterprise Services may not deplete dissolved oxygen levels in Budd Inlet at any time or location beyond the impact of the natural estuary condition. This waste load allocation is established by Ecology to improve water quality and reduce nutrient loading in Budd Inlet. The waste load allocations for other dischargers, including LOTT, are based on the assumption that Enterprise Services would meet the
natural estuary conditions. Because the Managed Lake Alternative would not meet the waste load allocation, Ecology would likely need to enforce a reduction in pollutant loading from other point and nonpoint sources that discharge to Budd Inlet. LOTT would likely need to remove additional nutrients from its wastewater discharge by investing in additional water treatment capacity. The increased likelihood of additional treatment being needed sooner and resulting additional costs would result in a significant impact to LOTT under the Managed Lake Alternative.

5.5 ESTUARY ALTERNATIVE

5.5.1 Impacts from Construction

5.5.1.1 Public Services

Construction impacts of the Estuary Alternative on emergency response times would generally be the same as described in Section 5.3.1, where public services would be affected by a nominal increase in traffic congestion and delays on primary roads. Impacts would also include potential closure of the 5th Avenue Bridge for a short period of time. Most of the new 5th Avenue Bridge could be constructed without any disruption to traffic since the existing 5th Avenue Bridge would remain while the new bridge is constructed in a different alignment to the south. There may be partial lane closures or night and weekend closures when the new bridge is connected at each end of the structure and some short-term closures of Olympic Way between Deschutes Parkway SW and 4th Avenue during construction of a new connection in that location. Response times for emergency vehicles traveling through that area would likely increase for an estimated one month. Given the short duration and early coordination with service providers, impacts would be less-than-significant.

5.5.1.2 Utilities

Trenching or excavation associated with stabilization and outfall replacement for Deschutes Parkway could result in utility conflicts and disruptions. In most cases, service disruptions would be temporary and typically would not exceed 1 day. An accidental rupture of or damage to utility lines during project construction could also temporarily disrupt utility services. The potential for impact would be minimized with implementation of measures to locate and confirm utility lines, and coordination of final construction plans with utilities.

Construction impacts on utilities under the Estuary Alternative would primarily be associated with the removal/demolition of the 5th Avenue Bridge. Existing major utility lines on the 5th Avenue Bridge, including potable water (12-inch), sewer line (16-inch), and natural gas line (12-inch), would need to be relocated. Utility lines would likely be relocated to the 4th Avenue Bridge or be installed under the new 5th Avenue Bridge, or directionally drilled under the opening. The methods for relocating utilities would be identified during the design phase of the project. Service disruptions are expected to be minimal as utility lines would be relocated prior to removal of the existing bridge. Stormwater outfall replacement along Deschutes Parkway SW and along the Arc of Statehood would avoid temporary impacts on stormwater conveyance either by timing construction to avoid times when stormwater flow would
occur, or by providing temporary diversions. With measures to minimize utility disruptions, impacts would be **less-than-significant**.

5.5.2 Impacts from Operation

5.5.2.1 Public Services

Potential operational impacts on public services related to the potential for increased recreational use would be the same as those described under the Managed Lake Alternative. For the same reasons, this impact would be **less-than-significant**.

5.5.2.2 Utilities

In addition to minor electricity requirements at decontamination stations, the new 5th Avenue Bridge would require additional electricity to power permanent lighting along the bridge. At the current level of design, the lighting system has not been specified. Conventional street lighting systems can draw up to 500 to 1,000 watts per hour. The final design would include a low-energy lighting system and include low wattage lights such as LED lamps and, if feasible, would be solar powered.

Long-term (operation) impacts on utilities would primarily be associated with reestablishing tidal hydrology to the basin.

Reestablishing tidal hydrology to the Capitol Lake Basin would introduce saltwater into locations where existing utility infrastructure is vulnerable to saline conditions. Utility infrastructure within the modeled extent of flooding under RSLR conditions would also be vulnerable. Corrosion of metal utility lines and surfaces is a risk when these objects encounter saltwater. Saltwater may contact buried pipes through increased salinity in groundwater and higher groundwater elevations as a result of sea-level rise. Splash, spray, and direct inundation of pipes suspended along bridge crossings are also a risk during storms. In addition to pipes, electrical and mechanical equipment may be permanently damaged if flooded.

Corrugated metal (steel) pipe outfalls located within the Capitol Lake Basin would likely deteriorate quickly in saltwater. In particular, a number of metal outfalls have been identified as penetrating the bulkhead at the Arc of Statehood. To ensure that implementation of the Estuary Alternative does not result in corrosion of existing infrastructure, vulnerable utilities, including metal outfalls, would be identified and replaced. Stormwater outfalls along Deschutes Parkway would also be replaced as part of the Deschutes Parkway stabilization work.

While design measures are included to replace existing metal outfalls, other low-lying utility lines would remain vulnerable. Suspended utilities at the railroad crossing (hung under pedestrian walkway) would also be potentially vulnerable to saltwater corrosion. The suspended lines are approximately +8 to +9 feet NGVD29, placing them in the intertidal zone (or at least the splash zone). Buried ductile iron utility lines are present in the area, including a 16-inch water line under Marathon Park. Low levels of salinity in groundwater would potentially reduce the life expectancy of the buried pipes. Given the potential for
damage, impacts are considered **significant**. Coordination with local utility providers during their scheduled systemwide conditions assessments would help to ensure that corrosion risks are identified and appropriate measures are in place to monitor, protect (e.g., through sliplining pipes), or replace utilities at risk of corrosion. With this mitigation, impacts from saltwater exposure could be reduced to less-than-significant levels.

As previously described, flooding in the Capitol Lake Basin and surrounding areas can occur through overland flooding from the Capitol Lake Basin. Under the Estuary Alternative, removal of the 5th Avenue Dam would allow water levels in the basin to rise and fall with the tides. Unlike the No Action and Managed Lake Alternatives, maximum water levels under the Estuary Alternative would be driven by extreme tidal flooding events with RSLR. Under modeled extreme tidal flooding events (with 2 feet of RSLR), maximum water levels for the Estuary Alternative would be 16 feet NAVD88, approximately 1 foot lower than the modeled maximum water levels for the No Action Alternative, which would occur under extreme river flooding (Table 5.3). Similarly, the extent and depth of flooding would increase in low-lying areas along the entire perimeter of the Capitol Lake Basin, including in the Powerhouse Road area. However, most utilities that may be affected by overland flooding are on the eastern shore of the North Basin, in the vicinity of Heritage Park and Powerhouse Road.

Flooding (beyond No Action) predicted in the Heritage Park area for the Estuary Alternative would be mitigated by a berm and other improvements currently planned as part of the Sea Level Response Plan.

Table 5.3 Summary of Hydrodynamic Model Results for Estuary Alternative – Water Levels under Representative Extreme River Flooding and 100-year Tide (with 2 feet of RSLR)

<table>
<thead>
<tr>
<th>Flood Event</th>
<th>Location</th>
<th>No Action Alternative</th>
<th>Managed Lake Alternative</th>
<th>Estuary Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event #1 - Extreme River Flood Event (with RSLR)</td>
<td>Max. Level in Capitol Lake Basin</td>
<td>+21.0</td>
<td>+21.3</td>
<td>+19.4</td>
</tr>
<tr>
<td></td>
<td>Max. Level at Heritage Park (North Basin)</td>
<td>+17.4</td>
<td>+17.7</td>
<td>+15.1</td>
</tr>
<tr>
<td>Event #2 - 100-year Tide (with RSLR)</td>
<td>Max. Level in Capitol Lake Basin</td>
<td>+16</td>
<td>+16.4</td>
<td>+16.7</td>
</tr>
<tr>
<td></td>
<td>Max. Level at Heritage Park (North Basin)</td>
<td>+10.8</td>
<td>+10.2</td>
<td>+16.1</td>
</tr>
</tbody>
</table>

Source: Moffatt & Nichol 2020

The Olympia Sea Level Response Plan currently recommends creating a raised berm, floodwall, and floodgate in Heritage Park before 24 inches of sea level rise are realized, which would prevent flooding via Capitol Lake for flood elevations up to 17 feet NAVD88. Therefore, additional flooding predicted in...
the Heritage Park area for the Estuary Alternative would be mitigated by the improvements currently noted in the Sea Level Response Plan.

Ecology has stated in the Budd Inlet TMDL that the Estuary Alternative is the only alternative that can meet the waste load allocation because it would constitute a “natural estuary” condition. The waste load allocations for other dischargers are based on the assumption that this condition is achieved. This means that under the existing TMDL, if all other dischargers are meeting their waste load allocations, Ecology should not need to increase discharge requirements for LOTT and other utility dischargers. LOTT must continue to meet existing discharge benchmarks, and these may become increasingly stringent in the future and may still result in additional treatment requirements; but these changes would be unrelated to the project under the Estuary Alternative. As a result, no impacts to LOTT are anticipated under the Estuary Alternative.

5.6 HYBRID ALTERNATIVE

5.6.1 Impacts from Construction

5.6.1.1 Public Services

The potential impacts on public services under the Hybrid Alternative would be the same as those described under the Estuary Alternative. As a result of short-term closures related to construction of the new 5th Avenue Bridge, response times for emergency vehicles that travel through that area would likely increase for an estimated one month. Given the short duration and early coordination with service providers, impacts would be less-than-significant.

5.6.1.2 Utilities

The potential impacts on utilities under the Hybrid Alternative would be the same as those described under the Estuary Alternative. Mitigation would also be implemented under the Hybrid Alternative to avoid or minimize damage or significant adverse impacts on utilities. With these measures, construction impacts on public services and utilities would be less-than-significant.

5.6.2 Impacts from Operation

5.6.2.1 Public Services

Potential operational impacts on public services related to potential for increased recreational use would be the same as those described for all action alternatives. For the same reasons, this impact would be less-than-significant.

5.6.2.2 Utilities

In addition to electricity requirements along the new 5th Avenue Bridge and at decontamination stations, the Hybrid Alternative requires some additional electricity to power permanent lighting along the barrier wall. At the current level of design, the lighting system has not been specified. The final
design of the alternative will include a low-energy lighting system and include low wattage lights such as LED lamps and, if feasible, would be solar powered.

As with the Estuary Alternative, long-term (operation) impacts on utilities would primarily be associated with reestablishing tidal hydrology to the basin. Given the potential for saltwater to damage low-lying utilities, impacts are considered **significant**. With mitigation measures to monitor utility lines for corrosion and replace the lines if corrosion starts to become considerable, impacts from saltwater exposure could be reduced to less-than-significant levels.

Same as the Estuary Alternative, utility infrastructure within other low-lying areas of the basin would be vulnerable, especially if they include materials susceptible to corrosion. As a result, impacts on utilities under the Hybrid Alternative could be **significant**. With mitigation measures to monitor and replace utility lines, impacts could be reduced to less-than-significant levels. With the freshwater pool in the North Basin, corrosion impacts on outfalls along the Arc of Statehood would be avoided and no replacements would be necessary.

Same as the Estuary Alternative, the maximum water levels under the Hybrid Alternative would be primarily driven by extreme tidal flooding events with RSLR. Under modeled extreme tidal flooding events (with 2 feet of RSLR), maximum water levels for the Hybrid Alternative in the North Basin would be 16 feet NAVD88, approximately 1 foot lower than the modeled maximum water levels for the No Action Alternative, which would occur under extreme river flooding. As with flooding associated with the other action alternatives, flooding would occur in low-lying areas along the entire perimeter of the Capitol Lake Basin. However, the majority of utilities that may be affected by overland flooding are on the eastern shore of the North Basin, in the vicinity of Heritage Park and Powerhouse Road. Unlike the maximum water levels modeled for the Estuary Alternative which are addressed by measures included in the Olympia Sea Level Response Plan, the potential for flooding in the Heritage Park and Powerhouse Road area under the Hybrid Alternative would be addressed by the protective presence of the barrier wall for the hybrid reflecting pool.

Table 5.4 Summary of Hydrodynamic Model Results for Hybrid Alternative – Water Levels under Representative Extreme River Flooding and 100-year Tide (with 2 feet of RSLR)

<table>
<thead>
<tr>
<th>Flood Event</th>
<th>Location</th>
<th>No Action Alternative</th>
<th>Managed Lake Alternative</th>
<th>Estuary Alternative</th>
<th>Hybrid Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event #1 - Extreme River Flood Event (with RSLR)</td>
<td>Max. Level in Capitol Lake Basin</td>
<td>+21.0</td>
<td>+21.3</td>
<td>+19.4</td>
<td>+19.7</td>
</tr>
<tr>
<td></td>
<td>Max. Level in North Basin</td>
<td>+17.4</td>
<td>+17.7</td>
<td>+15.1</td>
<td>15.4</td>
</tr>
</tbody>
</table>
The Hybrid Alternative has not been modeled by Ecology so there is uncertainty related to how this alternative would change waste load allocations. Because it is not a “natural estuary” condition, it is possible that Ecology may further regulate other point and non-point discharges into Budd Inlet in order to meet water quality standards. Therefore, the Hybrid Alternative could require LOTT to construct additional treatment sooner than under the Estuary Alternative. However, it is likely that requirements for LOTT and other utility dischargers would be substantially less stringent than would occur under the No Action and Managed Lake Alternatives, and therefore, additional treatment could be constructed later in time. Given this, the impacts are considered less-than-significant.

5.7 AVOIDANCE, MINIMIZATION, AND MITIGATION MEASURES

A number of project design features that minimize impacts on public services and utilities have been incorporated into the Estuary and Hybrid Alternatives, including replacing outfalls and other infrastructure vulnerable to saltwater exposure. Additional measures to address adverse impacts are listed below.

5.7.1 Measures Common to All Action Alternatives

5.7.1.1 Construction

- Prior to the completion of final project construction plans, individual utility agencies with utilities located within or adjacent to areas of construction activity shall be contacted to determine the extent and type of temporary protective measures that must be implemented to prevent construction damage to surface and subsurface utilities.
- Coordinate with utility companies and other relevant agencies before construction to locate existing utilities and avoid damage. Avoid the relocation of utilities whenever possible. Provide notification of any potential interruptions in services to the appropriate agencies.
- Stage utility relocations to minimize interruptions in service.
- Prior to construction, consult with local police, fire, and emergency response to develop and implement emergency response plans, establish emergency vehicle routes, and ensure that general emergency management services are not compromised.
- Require contractor(s) to prepare traffic control plans for construction activities that may affect road right-of-way. Measures typically used in traffic control plans include advertising
of planned lane closures, warning signage, a flag person to direct traffic flows when needed, and methods to ensure continued access by emergency vehicles.

5.7.2 Measures Specific to Each Action Alternative

5.7.2.1 Managed Lake Alternative

Construction

No additional mitigation would be needed during construction of the Managed Lake Alternative.

Operation

- In coordination with the Olympia Sea Level Response Plan, inclusion of design parameters for the flood-proofing design of the Heritage Park berm in consideration of hydrologic modeling completed for this project to account for extreme river flooding.

5.7.2.2 Estuary Alternative

Construction

- Coordinate with the City of Olympia and utility providers during project design regarding relocation of utilities related to 5th Avenue Bridge replacement.

Operation

- During design, complete an evaluation of utilities within low-lying areas potentially vulnerable to flooding under future conditions with RSLR, and coordinate with public and private utility owners in developing a protection or replacement schedule.
- Coordinate with local utility providers during their scheduled systemwide conditions assessments to ensure that corrosion risks are identified and appropriate measures are in place to monitor, protect, or replace utilities at risk of corrosion.

5.7.2.3 Hybrid Alternative

Construction

- Coordinate with the City of Olympia and utility providers during project design regarding relocation of utilities related to 5th Avenue Bridge replacement.

Operation

- During design, complete an evaluation of utilities within low-lying areas potentially vulnerable to flooding under future conditions with RSLR, and coordinate with public and private utility owners in developing a protection or replacement schedule.
• Coordinate with local utility providers during their scheduled systemwide conditions assessments to ensure that corrosion risks are identified and appropriate measures are in place to monitor, protect, or replace utilities at risk of corrosion.

5.7.3 Significant Unavoidable Adverse Impacts

For the Managed Lake Alternative, if Ecology requires LOTT and other utility dischargers to implement additional measures to improve water quality in the basin, this would be a significant impact unavoidable impact.

With the mitigation measures identified above, there would be no significant unavoidable adverse impacts on public services or utilities under the Estuary and Hybrid Alternatives.
6.0 References

