Responses (69)

Responses by Location

- Lacey: 26%
- Olympia: 9%
- Tumwater: 4%
- Other: 4%
- Unincorporated Thurston County: 57%

Responses by Interests

- Water-based recreation: 20% Primary, 8% Secondary
- Water quality: 15% Primary, 5% Secondary
- Urban planning: 12% Primary, 8% Secondary
- Permaculture: 10% Primary, 5% Secondary
- Non-water-based recreation: 10% Primary, 5% Secondary
- Natural environments: 9% Primary, 5% Secondary
- Maritime and port activities: 9% Primary, 5% Secondary
- Local area business: 9% Primary, 5% Secondary
- Landscaped environments: 8% Primary, 5% Secondary
- Historic structures: 8% Primary, 5% Secondary
- Climate change: 8% Primary, 5% Secondary
- Birds and wildlife/habitat: 8% Primary, 5% Secondary
- Architecture: 8% Primary, 5% Secondary
Selection Process

- Step 1: Sorted (organizational or individual)
- Step 2: Sorted (primary interest)
- Step 3: Reviewed “Why are you interested in participating on this Community Sounding Board?“
- Step 4: Considered residence
- Step 5: Considered gender
- Step 6: Additional review and refinement to improve diversity of secondary interests
- Step 7: Enterprise Services further refined the list to ensure a balance of interests and approved a final list (25 participants)
Charter

- Establishes roles and responsibilities
- Clarifies authority
- Summarizes expected outcomes
 - “Areas of agreement will be identified should they emerge, though there will be requirement to reach consensus.”
- Establishes operational protocols
 - No quorum requirement
 - One alternate permitted for organizational representatives
- Sets standard for group conduct
Meeting #1 Recap: April 8, 2019

- Project overview
- Charter review
- Measurable Evaluation Process
 - Generally positive response
 - Insightful concepts to consider
 - Not fatal flaws identified
- Public comment opportunity
Questions?
Measurable Evaluation Process

Step 1. Alternatives Optimization
- Evaluate and screen components of alternatives/concept proposals:
 - Feasibility (technical & regulatory)
 - Sustainability (environmental & economic)
- Develop optimized versions of the Managed Lake, Estuary, and Hybrid Alternatives using the objective evaluation criteria

Outcome: Optimized versions of the primary alternatives that are feasible and most sustainable advance into the EIS technical analyses

Step 2. Evaluate and Compare Alternatives
- Evaluate potential impacts and benefits of each alternative
- Use results of the technical analyses and measure alternatives against discipline-specific significance criteria
- Results presented in the Draft EIS

Outcome: Comparative summary of the impacts and benefits of the alternatives

Step 3. Project Goals Screening and Identification of a Preferred Alternative
- Evaluate the alternatives against ability to achieve project goals
- Review and consider public comment on the Draft EIS
- Preferred Alternative identified in Final EIS

Outcome: Identification of a Preferred Alternative that best meets the project Purpose and Need Statement

Legend
- EIS Public Comment Period
- Milestone

CAPITOL LAKE — DESCHUTES ESTUARY
Long-Term Management Project Environmental Impact Statement
<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Rating Scale</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Feasibility</td>
<td>High Medium Low</td>
<td>A component is considered technically feasible (1) if there are no apparent technical or logistical obstacles that would prevent the component from being constructed and maintained and (2) if there is technical uncertainty, it is at an acceptable level based on current, standard engineering practices.</td>
</tr>
<tr>
<td>Regulatory Feasibility</td>
<td>High Medium Low</td>
<td>A component is considered to have regulatory feasibility if (1) permits and approvals could be secured within project schedule and budget and (2) it is within Enterprise Services’ jurisdiction to implement and there are no legal protections on land, or other similar restrictions that could affect the feasibility.</td>
</tr>
<tr>
<td>Environmental Sustainability</td>
<td>High Medium Low Unknown</td>
<td>A component will support an environmentally sustainable outcome if it would provide net environmental benefits over a 30-year horizon, considering relative contribution to project goals.</td>
</tr>
<tr>
<td>Economic Sustainability</td>
<td>High Medium Low Unknown</td>
<td>A component will support an economically sustainable outcome if it would be cost-effective in meeting the project goal. A proposed approach is considered cost-effective if its present value life-cycle costs over a 30-year time horizon are low relative to other proposed approaches within the same project component.</td>
</tr>
</tbody>
</table>
Evaluation Outcomes

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Rating Scale</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Rating</td>
<td>Green</td>
<td>Green = Achieved the highest rating and no low ratings.</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>Yellow = Received a mixture of high and medium ratings, and/or one low rating.</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>Orange = Received two or more low ratings, and/or the lowest rating overall.</td>
</tr>
<tr>
<td></td>
<td>Green, Yellow, Orange</td>
<td></td>
</tr>
<tr>
<td>Selected for Optimized Alternative</td>
<td>✓ / ×</td>
<td>✓ = Selected based on results of the evaluation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>× = Not selected based on results of the evaluation.</td>
</tr>
<tr>
<td>Component Rating Confirmed</td>
<td>Y / N</td>
<td>(To be completed following technical analyses)</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y = Yes, component is considered feasible and sustainable, based on current design, best available science, and EIS Project Team review.</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N = No, component has failed feasibility and sustainability review.</td>
</tr>
</tbody>
</table>
Step 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality</td>
<td>Passive Water Quality Improvements</td>
<td></td>
<td></td>
<td>Technical Feasibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active Water Quality Management</td>
<td></td>
<td></td>
<td>Regulatory Feasibility</td>
<td></td>
</tr>
<tr>
<td>Sediment Management</td>
<td>Dredging Summary</td>
<td></td>
<td></td>
<td>Environmental Sustainability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dredged Material Disposal</td>
<td></td>
<td></td>
<td>Economic Sustainability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ongoing Sediment Control</td>
<td></td>
<td></td>
<td>Overall Rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional Dredging Considerations</td>
<td></td>
<td></td>
<td>Selected for Optimized Alternative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Component Rating Confirmed (following technical analyses)</td>
<td></td>
</tr>
<tr>
<td>Ecological Functions</td>
<td>Invasive and Nuisance Species Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freshwater Wetlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offsite Ecological Restoration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Use</td>
<td>Recreational Opportunities in & around Lake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional Recreational Considerations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions?
Water Quality Methodology

- Relies heavily on existing data and previous analyses with updated analysis as appropriate
 - High level of available data and previous analyses of Capitol Lake and Lower Budd Inlet
 - Uses established protocols, models, assessment tools
 - Efficiently uses available funds
 - Allows informed decision making within project schedule

- The EIS evaluation will focus on comparative impacts to the water quality parameters of key interest

- Will be reviewed by Technical Work Group tomorrow and by Independent Third Party Experts in May
Upcoming Project Activities

- Developing methodologies for the following disciplines
 - Hydrodynamic and Sediment Transport Modeling
 - Economics
 - Sediment Quality
 - Aquatic Invasive Species
 - Land Use, Shorelines and Recreation
 - Wetlands/vegetation and Fish/Wildlife

- Reviewing existing background documents and identifying data needs

- Obtaining new data as needed
 - Bathymetric survey of Capitol Lake
 - Water quality sampling in Capitol Lake
 - Potential recreational surveys

- Coordinating a consultant-team site visit